Facilities featuring cutting-edge technologies and instrumentation for contemporary biophysics research include:

- Center for Structural Biology at the University of Illinois at Chicago: 800 and 900MHz super high-field NMR spectrometers
- Electron Cryomicroscopy Facility (cryoEM): imaging capabilities for biological complexes
- Integrated Molecular Structure Education and Research Center: analytical instrumentation, including premier resources for biomolecular NMR and an array of high-resolution spectrometers and chromatographs
- Keck Biophysics Facility: more than 20 instruments for macromolecular structure-function analysis
- LS-CAT at the Advanced Photon Source at Argonne National Laboratory: premier resources for macromolecular x-ray crystallography
- Proteomics Center of Excellence: custom instruments for Fourier Transform Mass Spectrometry (FTMS)

Contact Us
847.491.7078
biophysics@northwestern.edu
www.biophysics.northwestern.edu

Molecular Biophysics
Northwestern University
2205 Tech Drive
Evanston, Illinois 60208-5500

© 2012 Northwestern University. All rights reserved. Printed by Graphic Relations.
847.491.8200 E. Northwestern
To view opportunities worldwide, please visit our website:
educate and employ
The biophysics community on Northwestern University’s Chicago and Evanston campuses has grown substantially in the past two decades with the recruitment of more than 20 dynamic faculty members. Graduate students have access to state-of-the-art instrumentation and laboratories where faculty from eight departments and programs have established an ambitious yet highly collegial research environment.

Both campuses are situated along the shores of Lake Michigan and have ready access to the cultural and recreational opportunities and the restaurants and shops of Chicago and Evanston.

www.biophysics.northwestern.edu

Northwestern’s research programs in biophysics explore diverse topics in structural biology, drug design, mechanistic biology, computational biology and informatics, and chemical biology. A variety of fundamental biological questions are being studied in the following areas:

- gene regulation
- macromolecular machines
- metal trafficking
- networks
- nucleic acid structure and function
- protein and RNA binding and processing
- protein structure and function
- signaling

The didactic component of the Molecular Biophysics Training Program includes courses on three topics:

- molecular biophysics, macromolecular structure, macromolecular function
- contemporary biophysical methods
- macromolecular crystallography and nuclear magnetic resonance
- quantitative biology

Beyond courses, the training program sponsors these activities:

- Biophysics Club
- Biophysics Seminar Series
- Biophysics and Structure-Function Journal Club
- Annual Biophysics Symposium

Northwestern graduate students in their second or third year are eligible for traineeship support from the Molecular Biophysics Training Grant. More information on how to apply can be found at www.biophysics.northwestern.edu.
The biophysics community on Northwestern University’s Chicago and Evanston campuses has grown substantially in the past two decades with the recruitment of more than 20 dynamic faculty members. Graduate students have access to state-of-the-art instrumentation and laboratories where faculty from eight departments and programs have established an ambitious yet highly collegial research environment.

Both campuses are situated along the shores of Lake Michigan and have ready access to the cultural and recreational opportunities and the restaurants and shops of Chicago and Evanston.

www.biophysics.northwestern.edu

RESEARCH TOPICS
Northwestern’s research programs in biophysics explore diverse topics in structural biology, drug design, mechanistic biology, computational biology and informatics, and chemical biology. A variety of fundamental biological questions are being studied in the following areas:

- gene regulation
- macromolecular machines
- metal trafficking
- networks
- nuclear acid structure and function
- protein and RNA binding and processing
- protein structure and function
- signaling

CURRICULUM
The didactic component of the Molecular Biophysics Training Program includes courses on three topics:

- molecular biophysics, macromolecular structure, macromolecular function
- contemporary biophysical methods
- macromolecular crystallography and nuclear magnetic resonance
- quantitative biology

Besides courses, the training program sponsors these activities:

- Biophysics Club
- Biophysics Seminar Series
- Biophysics and Structure-Function Journal Club
- Annual Biophysics Symposium

FACULTY PRECEPTORS
Luis Amaral
Wayne Anderson
Douglas Freyman
Elad Harel
Xiaolin He
Brian Hoffman
Neil Kelleher
Robert Lamb
Joshua Leonard
John Marko
Thomas Meade
Alfonso Mondragón
Richard Morimoto
Adilson Motter
Thomas O’Halloran
Monica Olvera de la Cruz
Heather Pinkert
Ishwar Radhakrishnan
Sarah Rizo
Amy Rosenzweig
Richard Silverman
Erik Sontheimer
Alexander Staták
Vinzenz Unger

Northwestern graduate students in their second or third year are eligible for traineeship support from the Molecular Biophysics Training Grant. More information on how to apply can be found at www.biophysics.northwestern.edu.
The biophysics community on Northwestern University’s Chicago and Evanston campuses has grown substantially in the past two decades with the recruitment of more than 20 dynamic faculty members. Graduate students have access to state-of-the-art instrumentation and laboratories where faculty from eight departments and programs have established an ambitious yet highly collegial research environment.

Both campuses are situated along the shores of Lake Michigan and have ready access to the cultural and recreational opportunities and the restaurants and shops of Chicago and Evanston.

www.biophysics.northwestern.edu

GRADUATE PROGRAMS

- Chemical and Biological Engineering
 www.chem-biol-eng.northwestern.edu
- Chemistry
 www.chemistry.northwestern.edu
- Walter S. and Lucienne Driskill Graduate Training Program in Life Sciences
 www.biology.northwestern.edu/gtp
- Interdepartmental Biomedical Sciences Program
 www.bids.northwestern.edu
- Materials Science and Engineering
 www.matsci.northwestern.edu
- Interdepartmental Neuroscience Program
 www.mstp.northwestern.edu
- Physics
 www.physics.northwestern.edu

RESEARCH TOPICS

Northwestern’s research programs in biophysics explore diverse topics in structural biology, drug design, mechanistic biology, computational biology and informatics, and chemical biology. A variety of fundamental biological questions are being studied in the following areas:

- gene regulation
- macromolecular machines
- metal trafficking
- networks
- nuclear acid structure and function
- protein and RNA folding and processing
- protein structure and function
- signaling

CURRICULUM

The didactic component of the Molecular Biophysics Training Program includes courses on three topics:

- molecular biophysics, macromolecular structure, macromolecular function
- contemporary biophysical methods
- macromolecular crytallography and nuclear magnetic resonance
- quantitative biology

Besides courses, the training program sponsors these activities:

- Biophysics Club
- Biophysics Seminar Series
- Biophysics and Structure-Function Journal Clubs
- Annual Biophysics Symposium

FACULTY PRECEPTORS

Luis Amaral
Wayne Anderson
Douglas Freyman
Elad Harel
Xiaolin He
Brian Hoffman
Neil Kelleher
Robert Lamb
Joshua Leonard
John Marko
Ishwar Radhakrishnan
Indira Raman
Sarah Rizo
Amy Rosenzweig
Richard Silverman
Erik Sontheimer
Alexander Stathakis
Vicente Unger

Northwestern graduate students in their second or third year are eligible for traineeship support from the Molecular Biophysics Training Grant. More information on how to apply can be found at www.biophysics.northwestern.edu.
FACILITIES

Facilities featuring cutting-edge technologies and instrumentation for contemporary biophysics research include:

- Center for Structural Biology at the University of Illinois at Chicago: 800 and 900MHz super high-field NMR spectrometers
- Electron CryoMicroscopy Facility (cryoEM): imaging capabilities for biological complexes
- Integrated Molecular Structure Education and Research Center: analytical instrumentation, including premier resources for biomolecular NMR and an array of high-resolution spectrometers and chromatographs
- Keck Biophysics Facility: more than 20 instruments for macromolecular structure-function analysis
- LS-CAT at the Advanced Photon Source at Argonne National Laboratory: premier resources for macromolecular x-ray crystallography
- Proteomics Center of Excellence: custom instruments for Fourier Transform Mass Spectrometry (FTMS)

CONTACT US

847.491.7078
biophysics@northwestern.edu
www.biophysics.northwestern.edu
FACILITIES
Facilities featuring cutting-edge technologies and instrumentation for contemporary biophysics research include:
- Center for Structural Biology at the University of Illinois at Chicago:
 800 and 900MHz super high-field NMR spectrometers
- Electron Cryomicroscopy Facility (cryoEM): imaging capabilities for biological complexes
- Integrated Molecular Structure Education and Research Center: analytical instrumentation, including premier resources for biomolecular NMR and an array of high-resolution spectrometers and chromatographs
- Keck Biophysics Facility: more than 20 instruments for macromolecular structure-function analysis
- LS-CAT at the Advanced Photon Source at Argonne National Laboratory: premier resources for macromolecular x-ray crystallography
- Proteomics Center of Excellence: custom instruments for Fourier Transform Mass Spectrometry (FTMS)

CONTACT US
847.491.7078
biophysics@northwestern.edu
www.biophysics.northwestern.edu

Molecular Biophysics Training Program
Northwestern University
Hogan Biological Sciences Building
2205 Technological Drive
Evanston, Illinois 60208-3500

© 2012 Northwestern University. All rights reserved. Produced by University Relations.

Molecular Biophysics
AT NORTHWESTERN UNIVERSITY

ALL THINGS IN NATURE HAVE A SHAPE, THAT IS TO SAY, A FORM, AN OUTWARD SIMILARITY, THAT TELLS US WHAT THEY ARE, THAT DISTINGUISHES THEM FROM OURSELVES AND FROM EACH OTHER, IT IS THE PERVERSIVE LAW OF ALL THINGS ORGANIC AND INORGANIC . . . THAT FORM FOLLOWS FUNCTION.

— Louis Sullivan
Architect and Leader of the Chicago School